
Learning Motor Primitives for Robotics
Jens Kober, Jan Peters

Robot Learning Lab (RoLL), Department of Empirical Inference
Max Planck Institute for Biological Cybernetics

Spemannstr. 38, 72076 Tübingen, Germany
{jens.kober,jan.peters}@tuebingen.mpg.de

Abstract— The acquisition and self-improvement of novel
motor skills is among the most important problems in robotics.
Motor primitives offer one of the most promising frameworks
for the application of machine learning techniques in this
context. Employing an improved form of the dynamic systems
motor primitives originally introduced by Ijspeert et al. [2],
we show how both discrete and rhythmic tasks can be learned
using a concerted approach of both imitation and reinforcement
learning. For doing so, we present both learning algorithms and
representations targeted for the practical application in robotics.
Furthermore, we show that it is possible to include a start-up
phase in rhythmic primitives. We show that two new motor skills,
i.e., Ball-in-a-Cup and Ball-Paddling, can be learned on a real
Barrett WAM robot arm at a pace similar to human learning
while achieving a significantly more reliable final performance.

I. INTRODUCTION

To date, most robots are still programmed by a smart
operator who uses human understanding of the desired task
in order to create a program for accomplishing the required
behavior. While such specialized programming is highly ef-
ficient, it is also expensive and limited to the situations the
human operator considered. In order to create robots that can
acquire new skills or improve existing abilities autonomously,
learning is the key ability. However, off-the-shelf machine
learning techniques do not scale into the high-dimensional
domains of anthropomorphic robotics. Instead, robot learning
requires methods that employ both representations and algo-
rithms appropriate for the domain. When humans learn new
motor skills, e.g., paddling a ball with a table-tennis racket
or hitting a tennis ball, it is highly likely that they rely on
a small set of motor primitives and use imitation as well as
reinforcement learning [1]. Inspired by this example, we will
discuss the technical counterparts in this paper and show how
both single-stroke and rhythmic tasks can be learned efficiently
by mimicking the human presenter with subsequent reward-
driven self-improvement.

Recently, the idea of using dynamical systems as motor
primitives was put forward by Ijspeert et al. [2] as a general
approach for representing control policies for basic move-
ments. The resulting movement generation has a variety of
favorable properties, i.e., rescalability with respect to both time
and amplitude, basic stability properties and the possibility
to encode either single-stroke or rhythmic behaviors. If a
favorable function approximator is chosen in this context,
ideally one that is linear in its parameters, then learning can
be sufficiently fast for application in robotics in real-time. A

series of such frameworks has been introduced to date [2]–[5].
Previous applications include a variety of different basic motor
skills such as tennis swings [2], T-ball batting [6], drumming
[7], planar biped walking [3], [8], constrained reaching tasks
[9] and even in tasks with potential industrial application [10].
Nevertheless, most of the previous work in motor primitive
learning (with the exceptions of [6] and [9]) has focused on
learning by imitation without subsequent self-improvement. In
real life, a human demonstration is rarely ever perfect nor
does it suffice for near-optimal performance. Thus, additional
reinforcement learning is essential for both performance-based
refinement and continuous adaptation of the presented skill.
Note, that this approach is substantially different from the
complementary idea of apprenticeship learning [11] that at-
tempts to infer the intent of the teacher and learn his policy
through an inverse reinforcement learning approach.

In this paper, we present our current best performing
setups for motor primitive learning with both the required
methods for imitation and reinforcement learning. The motor
primitive framework is discussed both for discrete, single-
stroke movement as well as rhythmic movements in Section II.
The appropriate imitation and reinforcement learning methods
are given in Section III. In Section IV, we show how the
resulting framework can be applied to both learning Ball-
in-a-Cup as a discrete task and Ball-Paddling as a rhythmic
task on a real Barrett WAM. The accompanying video1 shows
human presentation and imitation for both tasks as well as
reinforcement learning for Ball-in-a-Cup. The ball-paddling
task is of particular interest as we show how the combination
of different motor primitives is possible. It is among the
first applications where both rhythmic and discrete dynamic
systems motor primitives [2] are used in conjunction to achieve
the task.

Note that the presented work on Ball-in-a-Cup differs from
our previous work in [5] where we employed an extended
formulation of the motor primitives in simulation while we use
the standard formulation here and have results on a physical
Barrett WAM. In [12], we give more details on the derivation
of the PoWER algorithm while the robot implementation is not
treated in detail. Our work on Ball-Paddling with rhythmic
motor primitives is recent work where we cannot offer any
additional background reading.

1On-line at HTTP://WWW.YOUTUBE.COM/WATCH?V=CNYOMVZQDYM.

II. MOTOR PRIMITIVE REPRESENTATIONS

In this section, we first introduce the general idea behind
dynamic system motor primitives as suggested in [2]. Subse-
quently, we discuss the details of both the most current version
of discrete and the rhythmic motor primitives based on [4].

A. Generic Idea

The generic idea of dynamic systems motor primitives as
suggested in [2] can be understood in the most simple form
as two dynamical system with a one-way connection such that
one system drives the other one. Here, the hidden system acts
as an adjustable clock or phase of the movement. As a result,
the dynamical systems motor primitives can be parted into two
components, i.e., a canonical system h which drives trans-
formed systems gk for every considered degree of freedom
k; system h couples and synchronizes the different degrees
of freedom. For combining motor primitives one would have
seperate canonical systems h if they are independent or a joint
one if they are dependent. As a result, we have a system of
differential equations given by

ż = h (z) , (1)
ẋ = g (x, z,w) , (2)

which determine the variables of internal focus x. Here, z
denotes the state of the canonical system and w the inter-
nal parameters for transforming the output of the canonical
system. The output of the transformed systems are desired
positions, velocities and accelerations either in joint space or
in task space. A suitable controller is used to convert these in
motor torques.

The original formulation in [2] has the advantage that the
choice of the dynamical systems in Equations (1, 2) allows
determining the stability of the movement, choosing between
a rhythmic and a discrete movement and is invariant under
rescaling in both time and movement amplitude. With the right
choice of function approximator (in our case locally linear, see
Section III-A), fast learning from a teacher’s presentation is
possible. Additional feedback terms can be added as in [2],
[4], [5], [13].

B. Discrete Movement Primitives

While the original formulation in [2] for discrete dynam-
ical systems motor primitives used a second-order canonical
system, this formulation has proven to be unnecessarily com-
plicated in practice. Since then, it has been simplified and it
could be shown that a single first order system suffices [4]

ż = h (z) = −ταhz, (3)

which represents the phase of the movement. It has a time
constant τ (the same as in the transformed system) and a
parameter αh which is chosen such that the system is stable.
We can now choose our internal state of the transformed
system such that position of degree of freedom k is given
by qk = x2k, i.e., the 2kth component of x, the velocity by
q̇k = τx2k+1 = ẋ2k and the acceleration by q̈k = τ ẋ2k+1.

Upon these assumptions, we can express the motor primitives
function g in the following form

ẋ2k+1 =ταg(βg(tk−x2k)−x2k+1)+τ
((
tk−x0

2k

)
+ak

)
fk, (4)

ẋ2k=τx2k+1, (5)

with k denoting the degree of freedom. This differential
equation has the same time constant τ as the canonical
system, appropriately set parameters αg , βg , a goal parameter
tk, an amplitude modifier ak, the inital position x0

2k, and a
transformation function fk. This function alters the output
of the canonical system so that the transformed system can
represent complex nonlinear patterns and it is given by

fk (z) =
∑N
i=1ψi (z)wiz (6)

where w are adjustable parameters and ψ(z) are weights [4].
It uses normalized Gaussian kernels as weights given by

ψi =
exp

(
−hi (z − ci)2

)
∑N
j=1 exp

(
−hj (z − cj)2

) . (7)

These weights localize the interaction in phase space using the
centers ci and widths hi.

C. Rhythmic Movement Primitives

Similar as for the discrete dynamic systems motor primi-
tives, the original formulation in [2] has been superceded by a
newer version for which a single first order dynamical system
suffices [4]. Thus, we have a canonical system ż = h (z) = τω
with ω as the phase rate of change and can be used for
coupling several degrees of freedom together, see [3]. The
motor primitives function g can be given in the form

ẋ2k+1 = ταg (βg (xm − x2k)− x2k+1) + τakfk, (8)
ẋ2k = τx2k+1. (9)

This differential equation has the same time constant τ as
the canonical system, appropriately set parameters αg , βg ,
the baseline of the oscillation xm, an amplitude modifier
ak, and a transformation function fk. The transformation
function transforms the output of the canonical system so
that the transformed system can represent complex nonlinear
patterns and it is given by fk (z) =

∑
N
i=1ψi (z)wi where

w are adjustable parameters and ψ(z) are weights. It uses
normalized Gaussian kernels as weights given by

ψi =
exp (−hi (1− cos (z − ci)))∑N
j=1 exp (−hj (1− cos (z − cj)))

, (10)

where the main difference to Equation (7) is cosine transfor-
mation of the localization [4]. Again, the weights localize the
interaction in phase space using the centers ci and widths hi.

III. LEARNING METHODS FOR MOTOR PRIMITIVES

It is likely that humans rely both on imitation and on
reinforcement learning for learning new motor skills as both of
these approaches have different functions in the learning pro-
cess. Imitation learning has a given target and, thus, it allows
to learn policies from the examples of a teacher. However,
imitation learning can only reproduce a policy representing
or generalizing an exhibited behavior. Self-improvement by
trial-and-error with respect to an external reward signal can
be achieved by reinforcement learning. Nevertheless, tradi-
tional reinforcement learning algorithms require exhaustive
exploration of the state and action space. Given the high-
dimensionality of the state-space of anthropomorphic robots (a
seven degree of freedom robot defies exhaustive exploration),
the “curse of dimensionality” [14] fully applies and we need to
rely on local reinforcement learning methods which improve
upon the preceding imitation instead of traditional ‘brute force’
approaches. To some extent, this mimicks how children ac-
quire new motor skills with the teacher giving a demonstration
while the child subsequently attempts to reproduce and im-
prove the skill by trial-and-error. However, note that not every
task requires reinforcement learning and some can be learned
purely based on imitations. Nevertheless, few tasks are known
which are directly learned by reinforcement learning without
preceding mimicking [4]. Thus, we first review how to do
imitation learning with dynamic systems motor primitives in
Section III-A and, subsequently, we show how reinforcement
learning can be applied in this context in Section III-B. The
latter section will outline our reinforcement learning algorithm
for the application in motor primitive learning.

A. Imitation Learning for Discrete & Rhythmic Dynamical
Motor Primitives

In the presented framework, we initialize the motor primi-
tives by imitation learning as in [4]. This step can be performed
efficiently in the context of dynamical systems motor primi-
tives as the transformation function (6) is linear in parameters.
As a result, we can choose the weighted squared error

ε2m =
∑n
i=1ψ

m
i

(
f ref
i − zT

i wm
)2

(11)

as cost function and minimize it for all parameter vectors wm

with m ∈ {1, 2, . . . ,M}. Here, the corresponding weighting
function are denoted by ψmi and the basis functions by zT

i .
The reference or target signal f ref

i is the desired transformation
function and i ∈ {1, 2, . . . , n} indicates the number of the
sample. The error in Equation (11) can be rewritten as

ε2m =
(
f ref − Zwm

)T

Ψ
(
f ref − Zwm

)
(12)

with f ref giving the value of f ref
i for all samples i, Ψ =

diag (ψmi , . . . , ψ
m
n) and Zi = zT

i . As a result, we have a
standard locally-weighted linear regression problem that can
be solved straightforwardly and yields the unbiased estimator

wm =
(
ZTΨZ

)−1

ZTΨf ref. (13)

This general approach has originally been suggested in [2].
Estimating the parameters of the dynamical system is slightly
more daunting, i.e., the movement duration of discrete move-
ments is extracted using motion detection and the time-
constant is set accordingly. Similarly, the base period for the
rhythmic dynamical motor primitives was extracted using first
repetitions and, again, the time-constants τ are set accordingly.
As the start-up phase in rhythmic presentations may deviate
significantly from the periodic movement, the baseline of the
oscillation xm often needs to be estimated based on the later
part of the recorded movement, the value a is determined as
the mean of the amplitudes of individual oscillations in this
part.

B. Reinforcement Learning with PoWER

Reinforcement learning [15] of motor primitives is a very
specific type of learning problem where it is hard to apply
generic reinforcement learning algorithms [6], [16]. For this
reason, the focus of this paper is largely on novel domain-
appropriate reinforcement learning algorithms which operate
on parametrized policies for episodic control problems.

1) Reinforcement Learning Setup: When modeling our
problem as a reinforcement learning problem, we always have
a high-dimensional state s = [z,x] and as a result, standard
RL methods which discretize the state-space can no longer
be applied. The action a = f(z) + ε̂ is the output of our
motor primitives where the exploration is denoted by ε. As a
result, we have a stochastic policy a ∼ π(s) with parameters
θ = [wi] ∈ RN which can be seen as a distribution over
the actions given the states. After a next time-step δt, the
actor transfers to a state st+1 and receives a reward rt. As
we are interested in learning complex motor tasks consisting
of a single stroke or a rhythmically repeating movement, we
focus on finite horizons of length T with episodic restarts [15].
While the policy representation is substantially different, the
rhythmic movement resembles a repeated episodic movement
in the reinforcement learning process. The general goal in
reinforcement learning is to optimize the expected return of
the policy with parameters θ defined by

J(θ) =
∫

Tp(τ)R(τ)dτ , (14)

where τ = [s1:T+1,a1:T] denotes a sequence of states
s1:T+1 = [s1, s2, . . ., sT+1] and actions a1:T = [a1,
a2, . . ., aT], the probability of an episode τ is denoted
by p(τ) and R(τ) refers to the return of an episode τ
and T is the set of all possible paths. Using Markov as-
sumption, we can write the path distribution as p(τ) =
p(s1)

∏T+1
t=1 p(st+1|st,at)π(at|st, t) where p(s1) denotes the

initial state distribution and p(st+1|st,at) is the next state
distribution conditioned on last state and action. Similarly,
if we assume additive, accumulated rewards, the return of
a path is given by R(τ) = 1

T

∑T
t=1 r(st,at, st+1, t), where

r(st,at, st+1, t) denotes the immediate reward.
While episodic Reinforcement Learning (RL) problems with

finite horizons are common in motor control, few methods

Figure 1. This figure shows schematic drawings of the Ball-in-a-Cup motion, a kinesthetic teach-in as well as the performance of the robot after both
imitation and reinforcement learning. The green arrows indictate the directions of the current movements in the respective frame for the schematic. The
human demonstration was taught to the robot by imitation learning with 31 parameters per joint for an approximately three seconds long trajectory. The robot
manages to reproduce the imitated motion quite accurately but the ball misses the cup by approximately 13 centimeters. After around 42 trial runs of our
Policy learning by Weighting Exploration with the Returns (PoWER) algorithm, the robot has improved its motion such that the ball goes into the cup for
the first time. After roughly 75 rollouts, we have good performance and at the end of the 100 rollouts we have virtually no failures anymore.

exist in the RL literature (notable exceptions are model-
free method such as Episodic REINFORCE [17] and the
Episodic Natural Actor-Critic eNAC [6] as well as model-
based methods, e.g., using differential-dynamic programming
[18]). In order to avoid learning of complex models, we focus
on model-free methods and, to reduce the number of open
parameters, we rather use a novel Reinforcement Learning al-
gorithm which is based on expectation-maximization. Our new
algorithm is called Policy learning by Weighting Exploration
with the Returns (PoWER) and can be derived from the same
higher principle as previous policy gradient approaches, see
[12] for details.

2) Policy learning by Weighting Exploration with the Re-
turns (PoWER): When learning motor primitives, we intend
to learn a deterministic mean policy ā = θTµ(s) = f (z)
which is linear in parameters θ and augmented by additive
exploration ε(s, t) in order to make model-free reinforcement
learning possible. As a result, the explorative policy can be
given in the form a = θTµ(s, t) + ε(µ(s, t)). Previous
work in [6], [16], with the notable exception of [19], has
focused on state-independent, white Gaussian exploration, i.e.,
ε(µ(s, t)) ∼ N (0,Σ), and has resulted into applications
such as T-Ball batting [6] and constrained movement [9].
However, from our experience, such unstructured exploration
at every step has several disadvantages, i.e., (i) it causes a large
variance in parameter updates which grows with the number of
time-steps, (ii) it perturbs actions too frequently, as the system

acts as a low pass filter the perturbations avarage out and thus,
their effects are ‘washed’ out and (iii) can damage the system
executing the trajectory.

Alternatively, as introduced by [19], one could generate a
form of structured, state-dependent exploration ε(µ(s, t)) =
εT
t µ(s, t) with [εt]ij ∼ N (0, σ2

ij), where σ2
ij are meta-

parameters of the exploration that can be optimized in a similar
manner. Each σ2

ij corresponds to one θij . This argument results
into the policy a ∼ π(at|st, t) = N (a|µ(s, t), Σ̂(s, t)). This
form of policies improves upon the shortcomings of directly
perturbed policies mentioned above. Based on the EM updates
for Reinforcement Learning as suggested in [12], [16], we can
derive the update rule

θ′ = θ +
Eτ

{∑T
t=1 εtQ

π(st,at, t)
}

Eτ

{∑T
t=1Q

π(st,at, t)
} , (15)

where

Qπ (s,a, t) = E
{∑T

t̃=tr
(
st̃,at̃, st̃+1, t̃

)
|st = s,at = a

}
is the state-action value function. Note that this algorithm does
not need the learning rate as a meta-parameter.

In order to reduce the number of trials in this on-policy
scenario, we reuse the trials through importance sampling
[15], [20]. To avoid the fragility sometimes resulting from
importance sampling in reinforcement learning, samples with
very small importance weights are discarded.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of rollouts

av
er

ag
e

re
tu

rn

Figure 2. This figure shows the expected return of the learned policy in the
Ball-in-a-Cup evaluation averaged over 20 runs.

The more shape parameters w are used the more details can
be captured in a motor primitive and it can ease the imitation
learning process. However, if the motor primitives need to
be refined by RL, each additional parameter slows down the
learning process. The parameters σ2

ij determine the exploration
behavior where larger values lead to greater changes in the
mean policy and, thus, may lead to faster convergence but can
also drive the robot in unsafe regimes. The optimization of the
parameters decreases the exploration during convergence.

IV. ROBOT EVALUATION

The methods presented in this paper are evaluated on two
learning problems on a real, seven degree of freedom Barrett
WAM, i.e., we learn the discrete task of Ball-in-a-Cup and
the rhythmic task Ball-Paddling. The resulting simplicity and
speed of the learning process demonstrate the suitability of
the motor primitive-based learning framework for practical
application.

The kinematic trajectory output by the motor primitives
is executed using a computed torque controller based on a
ridgid body dynamics model with parameters estimated from
recorded data and an additional friction model. Gains are
set low so that the robot is relatively compliant. This may
lead to execution errors in the kinematic trajectory. However,
Reinforcement Learning will directly learn policies that take
into account these imperfections of the controller.

A. Discrete Movement: Ball-in-a-Cup

The children motor game Ball-in-a-Cup, also known as
Balero and Bilboquet [21] is challenging even for a grown
up. The toy has a small cup which is held in one hand (or,
in our case, is attached to the end-effector of the robot) and
the cup has a small ball hanging down on a string (the string
has a length of 40cm for our toy). Initially, the ball is hanging
down vertically in a rest position. The player needs to move
fast in order to induce a motion in the ball through the string,
toss it up and catch it with the cup, a possible movement is
illustrated in Figure 1 in the top row.

Note that learning Ball-in-a-Cup and Kendama have previ-
ously been studied in robotics and we are going to contrast a
few of the approaches here. While we learn directly in the joint
space of the robot, Takenaka et al. [22] recorded planar human
cup movements and determined the required joint movements
for a planar, three degree of freedom (DoF) robot so that
it could follow the trajectories while visual feedback was
used for error compensation. Both Sato et al. [23] and Shone
[24] used motion planning approaches which relied on very
accurate models of the ball while employing only one DoF
in [24] or two DoF in [23] so that the complete state-space
could be searched exhaustively. Interestingly, exploratory robot
moves were used in [23] to estimate the parameters of the
employed model. The probably most advanced preceding work
on learning Kendama was done by Miyamoto [25] who used a
seven DoF anthropomorphic arm and recorded human motions
to train a neural network to reconstruct via-points. Employing
full kinematic knowledge, the authors optimize a desired
trajectory.

The state of the system can be described by joint angles
and joint velocities of the robot as well as the the Cartesian
coordinates and velocities of the ball. The actions are the joint
space accelerations where each of the seven joints is driven by
a separate motor primitive with one common canonical system.
The movement uses all seven degrees of freedom and is not
on a plane. All motor primitives are perturbed separately but
employ the same joint final reward. At the time tc where the
ball passes the rim of the cup with a downward direction, we
compute the reward as r(tc) = exp(−α(xc − xb)2 − α(yc −
yb)2) while we have r (t) = 0 for all t = tc. Here, the
cup position is denoted by [xc, yc, zc] ∈ R3, the ball position
[xb, yb, zb] ∈ R3 and we have a scaling parameter α = 100.
The directional information is necessary as the algorithm could
otherwise learn to hit the bottom of the cup with the ball. The
reward is not only affected by the movements of the cup but
foremost by the movements of the ball which are sensitive
to small changes in the movement. A small perturbation of
the initial condition or during the trajectory can change the
movement of the ball and hence the outcome of the complete
movement. The position of the ball is estimated using a stereo
vision system and needed to determine the reward.

Due to the complexity of the task, Ball-in-a-Cup is even
a hard motor task for children who usually only succeed
after observing another person presenting a demonstration first,
and after subsequent trial-and-error-based learning. Mimicking
how children learn to play Ball-in-a-Cup, we first initialize the
motor primitives by imitation and, subsequently, improve them
by reinforcement learning.

We recorded the motions of a human player by kinesthetic
teach-in in order to obtain an example for imitation as shown
in Figure 1 (middle row). Kinesthetic teach-in means “taking
the robot by the hand”, performing the task by moving the
robot while it is in gravity-compensation mode and record-
ing the joint angles, velocities and accelerations. A single
demonstration was used for imitation learning. Learning from
mulitple demonstrations did not improve the performance as

Figure 3. This figure shows schematic drawings of the Ball-Paddling motion, a kinesthetic teach-in as well as the performance of the robot after imitation
learning. When the string is stretched it is shown as thinner and darker. The human demonstration was taught to the robot by imitation learning with 10
parameters per joint for the rhythmic motor primitive. An additional discrete motor primitive is used for the start-up phase. Please see Section 4.2 and the
accompanying video for details.

the task is sensitive to small details. As expected, the robot
fails to reproduce the presented behavior even if we use all the
recorded details for the imitation. Thus, reinforcement learning
is needed for self-improvement. The more parameters are used
for the learning, the slower is the convergence. We found that
a necessary condition for convergence with the reward we
defined is that the ball goes above the rim of the cup so that the
algorithm gets at least a small positive reward for all rollouts.
In this way the algorithm can compare the performance of the
different rollouts. We determined that 31 shape-parameters per
motor primitive are needed.

In [12] we benchmarked our novel algorithm and several
widely used algorithms on tasks having characteristics similar
to this one. As a result we employ our best algorithm,
PoWER. The meta-parameters σij are initially set in the
order of magnitude of the median of the parameters for each
motor primitive and are then optimized alongside the shape-
parameters by PoWER. The performance of the algorithm is
fairly robust for values chosen in this range.

Figure 2 shows the expected return over the number of
rollouts where convergence to a maximum is clearly recog-
nizable. The robot regularly succeeds at bringing the ball into
the cup after approximately 75 rollouts. A nine year old child
got the ball in the cup for the first time after 35 trials while
the robot got the ball in for the first time after 42 rollouts.
However, after 100 trials, the robot exhibits perfect runs in
every single trial while, from our experience, the child does not
have a comparable success rate. Of course, such a comparison
with a child is contrived as a robot can precisely reproduce

movements unlike any human being and that children can most
likely adapt faster to changes in the setup.

After 100 rollouts, the meta-parameters such as the explo-
ration rate have converged to negligible size and do not influ-
ence the outcome of the behavior any longer. The experiments
in this paper use the original variant of the motor primitives
which cannot deal with large perturbations, however, the
extended variable-feedback variant presented in [5] can deal
with a variety of changes, e.g., in the length of the string,
the size or weight of the ball, directly while the approach
presented in this paper will recover quickly by learning an
adjusted policy in a few roll-outs. In [5] we also show that
learning a strategy of pulling the ball up and moving the cup
under the ball (as in Kendama) is possible in approximately
the same number of trials. In simulation, we have discussed a
variety of different strategies for Ball-in-a-Cup in [26].

B. Rhythmic Movement with start-up phase: Ball-Paddling

In Ball-Paddling, we have a table-tennis ball that is attached
to a table-tennis paddle by an elastic string. The goal is to have
the ball bouncing above the paddle. The string avoids that
the ball is falling down but also pulls the ball back towards
the center of the paddle if the ball is hit sufficiently hard
(i.e., the string is also stretched sufficiently as a consequence).
The task is fairly easy to perform open-loop once the player
has determined appropriate amplitude and frequency for the
motion. Furthermore, the task is robust to small changes of
these parameters as well as to small perturbations of the
environment. We again recorded the motions of a human

player using kinesthetic teach-in in order to obtain a demon-
stration for imitation learning as shown in Figure 3. From
the imitation, it can be determined by cross-validation that
10 shape-parameters per motor primitive are sufficient. The
shape parameters, the amplitude and the period of the motion
are estimated from the demonstration after the start-up phase.

However, as we start with a still robot where the ball rests
on the paddle, we require a start-up phase in order to perform
the task successfully. This initial motion has to induce more
energy in order to get the motion started and to extend the
string sufficiently. Once the ball falls below the paddle, the
rhythmic motion becomes chaotic and the behavior cannot
be recovered without an additional still phase – the same
was true for all human presenters. For our setup, the start-
up phase consists (as exhibited by the teacher’s movements)
of moving the paddle slower and further up than during the
rhythmic behavior. This kind of movement can easily be
achieved in the dynamic systems motor primitives framework
by imposing another discrete dynamical systems primitive
that gradually adapts the period parameter τ globally and the
amplitude modifier ak to the ones encountered in the rhythmic
behavior. The discrete modifier motor primitive is applied
additively to the two parameters. The goal parameter of this
modifier primitive is zero and thus, its influence vanishes
after the initialization time τmodif . With this start-up phase,
imitation learning from demonstrations suffices to reproduce
the motor skill successfully. To our knowledge, this application
is probably the first where both rhythmic and discrete dynamic
systems primitives are used together to achieve a particular
task.

V. CONCLUSION

In this paper, we present both novel learning algorithms and
experiments using the dynamic systems motor primitive [2],
[4]. For doing so, we have first described this representation
of the motor primitives. Subsequently, we have discussed both
appropriate imitation learning methods by locally weighted
regression and derived our currently best-suited reinforcement
learning algorithm for this framework, i.e., Policy learning by
Weighting Exploration with the Returns (PoWER). We show
that two complex motor tasks, i.e., Ball-in-a-Cup and Ball-
Paddling, can be learned on a real, physical Barrett WAM
using the methods presented in this paper. Of particular interest
is the Ball-Paddling application as it requires the combination
of both rhythmic and discrete dynamic systems primitives in
order to achieve a particular task.

REFERENCES

[1] T. Flash and B. Hochner, “Motor primitives in vertebrates and inverte-
brates,” Current Opinions in Neurobiology, vol. 15, pp. 660–666, 2005.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in Advances in Neural Information
Processing Systems (NIPS), S. Becker, S. Thrun, and K. Obermayer,
Eds., vol. 15. Cambridge, MA: MIT Press, 2003, pp. 1547–1554.

[3] S. Schaal, J. Peters, J. Nakanishi, and A. J. Ijspeert, “Control, plan-
ning, learning, and imitation with dynamic movement primitives,” in
Proceedings of the Workshop on Bilateral Paradigms on Humans and
Humanoids, IEEE 2003 International Conference on Intelligent RObots
and Systems (IROS), 2003.

[4] S. Schaal, P. Mohajerian, and A. J. Ijspeert, “Dynamics systems vs.
optimal control — a unifying view,” Progress in Brain Research, vol.
165, no. 1, pp. 425–445, 2007.

[5] J. Kober, B. Mohler, and J. Peters, “Learning perceptual coupling for
motor primitives,” in Proceedings of the IEEE/RSJ 2008 International
Conference on Intelligent RObots and Systems (IROS), 2008, pp. 834–
839.

[6] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Pro-
ceedings of the IEEE/RSJ 2006 International Conference on Intelligent
RObots and Systems (IROS), 2006, pp. 2219 – 2225.

[7] D. Pongas, A. Billard, and S. Schaal, “Rapid synchronization and
accurate phase-locking of rhythmic motor primitives,” in Proceedings
of the IEEE 2005 International Conference on Intelligent RObots and
Systems (IROS), 2005, pp. 2911–2916.

[8] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of biped
locomotion,” Robotics and Autonomous Systems (RAS), vol. 47, no. 2-3,
pp. 79–91, 2004.

[9] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement learn-
ing for imitating constrained reaching movements,” Advanced Robotics,
Special Issue on Imitative Robots, vol. 21, no. 13, pp. 1521–1544, 2007.

[10] H. Urbanek, A. Albu-Schäffer, and P.v.d.Smagt, “Learning from demon-
stration repetitive movements for autonomous service robotics,” in Pro-
ceedings of the IEEE/RSL 2004 International Conference on Intelligent
RObots and Systems (IROS), 2004, pp. 3495–3500.

[11] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the Twenty-First International
Conference on Machine Learning (ICML). ACM, 2004.

[12] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems (NIPS), 2008.

[13] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement repro-
duction and obstacle avoidance with dynamic movement primitives and
potential fields,” in IEEE International Conference on Humanoid Robots
(HUMANOIDS), 2008.

[14] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton
University Press, 1957.

[15] R. Sutton and A. Barto, Reinforcement Learning. MIT PRESS, 1998.
[16] J. Peters and S. Schaal, “Reinforcement learning for operational space,”

in Proceedings of the International Conference on Robotics and Au-
tomation (ICRA), Rome, Italy, 2007.

[17] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

[18] C. G. Atkeson, “Using local trajectory optimizers to speed up global
optimization in dynamic programming,” in Advances in Neural Infor-
mation Processing Systems 6 (NIPS), J. E. Hanson, S. J. Moody, and
R. P. Lippmann, Eds. Morgan Kaufmann, 1994, pp. 503–521.

[19] T. Rückstieß, M. Felder, and J. Schmidhuber, “State-dependent explo-
ration for policy gradient methods,” in Proceedings of the European
Conference on Machine Learning (ECML), 2008, pp. 234–249.

[20] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, no. 1, pp.
5–43, 2003.

[21] Wikipedia, “Ball-in-a-cup,” January 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Ball_in_a_cup

[22] K. Takenaka, “Dynamical control of manipulator with vision : “cup and
ball” game demonstrated by robot,” Transactions of the Japan Society
of Mechanical Engineers. C, vol. 50, no. 458, pp. 2046–2053, 1984.

[23] S. Sato, T. Sakaguchi, Y. Masutani, and F. Miyazaki, “Mastering of a
task with interaction between a robot and its environment : “kendama”
task,” Transactions of the Japan Society of Mechanical Engineers. C,
vol. 59, no. 558, pp. 487–493, 1993.

[24] T. Shone, G. Krudysz, and K. Brown, “Dynamic manipulation of
kendama,” Research Project, Rensselaer Polytechnic Institute, Tech.
Rep., 2000.

[25] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,
E. Nakano, Y. Wada, and M. Kawato, “A kendama learning robot based
on bi-directional theory,” Neural Networks, vol. 9, no. 8, pp. 1281–1302,
1996.

[26] S. Chiappa, J. Kober, and J. Peters, “Using bayesian dynamical systems
for motion template libraries,” in Advances in Neural Information
Processing Systems (NIPS). Cambridge, MA: MIT Press, 2009.

